SHARE
SPREAD
HELP

The Tradition of Sharing

Help your friends and juniors by posting answers to the questions that you know. Also post questions that are not available.


To start with, Sr2Jr’s first step is to reduce the expenses related to education. To achieve this goal Sr2Jr organized the textbook’s question and answers. Sr2Jr is community based and need your support to fill the question and answers. The question and answers posted will be available free of cost to all.

 

#
Authors:
Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser
Chapter:
Algorithm Analysis
Exercise:
Exercises
Question:47 | ISBN:9781118771334 | Edition: 6

Question

Communication security is extremely important in computer networks, and one way many network protocols achieve security is to encrypt messages. Typical cryptographic schemes for the secure transmission of messages over such networks are based on the fact that no efficient algorithms are known for factoring large integers. Hence, if we can represent a secret message by a large prime number p, we can transmit, over the network, the number r = p · q, where q > p is another large prime number that acts as the encryption key. An eavesdropper who obtains the transmitted number r on the network would have to factor r in order to figure out the secret message p.
Using factoring to figure out a message is hard without knowing the encryption key q. To understand why, consider the following naive factoring algorithm:
for (int p=2; p < r; p++)
if (r % p == 0)
return "The secret message is p!";
a. Suppose the eavesdropper’s computer can divide two 100-bit integers in  us (1 millionth of a second). Estimate the worst-case time to decipher the secret message p if the transmitted message r has 100 bits.
b. What is the worst-case time complexity of the above algorithm? Since the input to the algorithm is just one large number r, assume that the input size n is the number of bytes needed to store r, that is, n = ⌊(log2 r)/8⌋+1, and that each division takes time O(n).

TextbookTextbookTextbookTextbookTextbookTextbookTextbookTextbookTextbookTextbookTextbookTextbookTextbookTextbookTextbookTextbookTextbook

Sorry the answer is not available at the moment…

If you are able to find the answer, please make sure to post it here. So that your Juniors have smile on their lips and feel happy.

Spread the 'tradition of sharing'.